Introduction

Digipede customers have expressed interest in distributing calculations done in Matlab across a grid of
high-performance workstations to deliver dramatically improved throughput. This scenario is quite
familiar to Digipede; some of our customers already use the Digipede Network to distribute Matlab
workloads today, with excellent results. Below we describe the process. Far more detail on
development patterns referenced below is available in the Digipede Framework SDK (included with
every edition of the Digipede Network).

Distributing Matlab DLLs on the Digipede Network

While there are several methods that can be used to distribute Matlab calculations on a Digipede grid,
we recommend using Matlab .NET Builder to create DLLs containing the relevant calculations, and then
using Digipede’s Worker Pattern for an application that manages execution of those calculations on the
grid. This pattern depends on the Matlab Compute Runtime being installed on each compute node on
the grid.

Worker Pattern

Digipede’s Worker Pattern allows the .NET developer to create a class that encapsulates all data and
code to be distributed on the Digipede Network. The Digipede Network will distribute the assemblies
(executables and DLLs) necessary to work on the job to each node, and then will distribute individual
objects instantiated from the class to individual compute nodes for computation. See the Digipede
Developers Guide for more information about this pattern.

Steps to invoke the Matlab computation.

Create a .NET DLL from your M code Using the Matlab Builder for .NET, create a .NET DLL that
contains the function(s) you want to distribute.
Create a Worker class In the .NET application that will launch the job on the

grid, derive a class from the Digipede Worker class.
Ensure that this class has member variables representing
the inputs to and outputs from your Matlab logic.

If the application is a large application like a GUI, it may
be advisable to create this class in a DLL (Worker Library
pattern); if the application is smaller (a simple console
app, for example) the class may be implemented in the
.EXE itself (Worker Executable pattern).

Add a reference to the Matlab DLL In the assembly that implements your Worker class, add a
reference to the .NET DLL you built from Matlab.
Override the Worker.DoWork method, and instantiate
and invoke your Matlab method in that override. Store
the results in member variables.

In order to launch the job on the grid, you would do the following:

Create a JobTemplate | A JobTemplate describes the files that need to




move to work on the job. Use
NewWorkerJobTemplate() to create a
JobTemplate based on your Worker type. This will
automatically detect the dependency on your
Matlab DLL, so that will get distributed to the
compute nodes with the job. Add a FileDef
representing your CTF file to ensure that it gets
distributed as well.

Create and submit the Job

For each task in the job, instantiate an object from
your Worker class and set up the member
variables with the correct inputs.

Monitor events

As tasks complete on the compute nodes, the
TaskCompleted event will be raised in your client
applications. The Worker objects will be passed
into those events, with the results of their
calculations in their member variables.

The following diagram shows how the different components work together with the Digipede Network.




How it works

‘ YourWorker : Worker
(with reference to your Matlab

DLL)

Client Application

l‘ Workers with results are

returned

4. Worker objects are
returned to client
applications with

1. Instantiate your results

Worker objects (with all
input data) and submit
them to the Digipede
Network.

3. Each Worker will
execute, calling your
Matlab function with the

2. Worker objects are
distributed to compute

d ~ /| inputs, then storing the
nodes. { Digipede Agent results in member
y /A variables

~

Matlab DLL




